Bounds for Rational Points on Algebraic Curves, Optimal in the Degree, and Dimension Growth

Author:

Binyamini Gal1,Cluckers Raf2,Novikov Dmitry1

Affiliation:

1. Weizmann Institute of Science , Rehovot, Israel

2. Univ. Lille , CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France, and KU Leuven, Department of Mathematics, B-3001 Leuven, Belgium

Abstract

Abstract Bounding the number of rational points of height at most $H$ on irreducible algebraic plane curves of degree $d$ has been an intense topic of investigation since the work by Bombieri and Pila. In this paper we establish optimal dependence on $d$ by showing the upper bound $C d^{2} H^{2/d} (\log H)^{\kappa }$ with some absolute constants $C$ and $\kappa $. This bound is optimal with respect to both $d$ and $H$, except for the constants $C$ and $\kappa $. This answers a question raised by Salberger, leading to a simplified proof of his results on the uniform dimension growth conjectures of Heath-Brown and Serre, and where at the same time we replace the $H^{\varepsilon }$ factor by a power of $\log H$. The main strength of our approach comes from the combination of a new, efficient form of smooth parametrizations of algebraic curves with a century-old criterion of Pólya, which allows us to save one extra power of $d$ compared with the standard approach using Bézout’s theorem.

Publisher

Oxford University Press (OUP)

Reference29 articles.

1. Complex cellular structures;Binyamini;Ann. Math. (2),2019

2. Wilkie’s conjecture for Pfaffian structures;Binyamini;To appear in Ann. of Math. (2),2022

3. The number of integral points on arcs and ovals;Bombieri;Duke Math. J.,1989

4. A note on a paper by R. Heath-Brown: “the density of rational points on curves and surfaces” [Ann. of Math. (2)155 (2002), no. 2, 553–595; mr1906595];Broberg;J. Reine Angew. Math.,2004

5. Counting rational points on algebraic varieties;Browning;Duke Math. J.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3