The Equations Defining Affine Grassmannians in Type A and a Conjecture of Kreiman, Lakshmibai, Magyar, and Weyman

Author:

Muthiah Dinakar1,Weekes Alex2,Yacobi Oded3

Affiliation:

1. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

2. Department of Mathematics, The University of British Columbia, BC V6T 1Z2, Canada

3. School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

Abstract

Abstract The affine Grassmannian of $SL_n$ admits an embedding into the Sato Grassmannian, which further admits a Plücker embedding into the projectivization of Fermion Fock space. Kreiman, Lakshmibai, Magyar, and Weyman describe the linear part of the ideal defining this embedding in terms of certain elements of the dual of Fock space called shuffles, and they conjecture that these elements together with the Plücker relations suffice to cut out the affine Grassmannian. We give a proof of this conjecture in two steps; first, we reinterpret the shuffle equations in terms of Frobenius twists of symmetric functions. Using this, we reduce to a finite-dimensional problem, which we solve. For the 2nd step, we introduce a finite-dimensional analogue of the affine Grassmannian of $SL_n$, which we conjecture to be precisely the reduced subscheme of a finite-dimensional Grassmannian consisting of subspaces invariant under a nilpotent operator.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Invariant Grassmannians and a K3 surface with an action of order 192*2;Journal of Computational Algebra;2024-06

2. Subspaces fixed by a nilpotent matrix;Orbita Mathematicae;2024-01-01

3. On a conjecture of Pappas and Rapoport about the standard local model for GL_ d;Journal für die reine und angewandte Mathematik (Crelles Journal);2020-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3