Generic Dynamical Properties of Connections on Vector Bundles

Author:

Cekić Mihajlo1,Lefeuvre Thibault2

Affiliation:

1. Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France

2. Université de Paris and Sorbonne Université, CNRS, IMJ-PRG, F-75006 Paris, France

Abstract

Abstract Given a smooth Hermitian vector bundle $\mathcal{E}$ over a closed Riemannian manifold $(M,g)$, we study generic properties of unitary connections $\nabla ^{\mathcal{E}}$ on the vector bundle $\mathcal{E}$. First of all, we show that twisted conformal Killing tensors (CKTs) are generically trivial when $\dim (M) \geq 3$, answering an open question of Guillarmou–Paternain–Salo–Uhlmann [ 14]. In negative curvature, it is known that the existence of twisted CKTs is the only obstruction to solving exactly the twisted cohomological equations, which may appear in various geometric problems such as the study of transparent connections. The main result of this paper says that these equations can be generically solved. As a by-product, we also obtain that the induced connection $\nabla ^{\textrm{End}({\operatorname{{\mathcal{E}}}})}$ on the endomorphism bundle $\textrm{End}({\operatorname{{\mathcal{E}}}})$ has generically trivial CKTs as long as $(M,g)$ has no nontrivial CKTs on its trivial line bundle. Eventually, we show that, under the additional assumption that $(M,g)$ is Anosov (i.e., the geodesic flow is Anosov on the unit tangent bundle), the connections are generically opaque, namely that generically there are no non-trivial subbundles of $\mathcal{E}$ that are preserved by parallel transport along geodesics. The proofs rely on the introduction of a new microlocal property for (pseudo)differential operators called operators of uniform divergence type, and on perturbative arguments from spectral theory (especially on the theory of Pollicott–Ruelle resonances in the Anosov case).

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference29 articles.

1. Perturbation of Ruelle resonances and Faure–Sjöstrand anisotropic space;Bonthonneau;Rev. Un. Mat. Argentina,2020

2. Smooth Anosov flows: correlation spectra and stability;Butterley;J. Mod. Dyn.,2007

3. Holonomy inverse problem on Anosov manifolds;Cekić

4. Conformal Killing symmetric tensor fields on Riemannian manifolds;Dairbekov;Mat. Tr.,2010

5. Dynamical zeta functions for Anosov flows via microlocal analysis;Dyatlov;Ann. Sci. Éc. Norm. Supér. (4),2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stability estimates for the holonomy inverse problem;Communications in Partial Differential Equations;2024-05-27

2. Local rigidity of manifolds with hyperbolic cusps II. Nonlinear theory;Journal de l’École polytechnique — Mathématiques;2023-11-16

3. Isometric Extensions of Anosov Flows via Microlocal Analysis;Communications in Mathematical Physics;2022-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3