Smooth Fano Intrinsic Grassmannians of Type 2,n with Picard Number Two

Author:

Qureshi Muhammad Imran1,Wrobel Milena2

Affiliation:

1. Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. Institut fur Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

Abstract

Abstract We introduce the notion of intrinsic Grassmannians that generalizes the well-known weighted Grassmannians. An intrinsic Grassmannian is a normal projective variety whose Cox ring is defined by the Plucker ideal $I_{d,n}$ of the Grassmannian $\textrm{Gr}(d,n)$. We give a complete classification of all smooth Fano intrinsic Grassmannians of type $(2,n)$ with Picard number two and prove an explicit formula to compute the total number of such varieties for an arbitrary $n$. We study their geometry and show that they satisfy Fujita’s freeness conjecture.

Funder

Deanship of Scientific Research at the King Fahd University of Petroleum and Minerals

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference27 articles.

1. Cox Rings

2. On terminal Fano 3-folds with 2-torus action;Bechtold;Int. Math. Res. Not. IMRN,2016

3. Gorenstein formats, canonical and Calabi–Yau threefolds;Brown;Experiment. Math.,2019

4. On the birational geometry of Fano 4-folds;Casagrande;Math. Ann.,2013

5. Weighted Grassmannians;Corti,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3