An Algorithm for Berenstein–Kazhdan Decoration Functions and Trails for Classical Lie Algebras

Author:

Kanakubo Yuki1,Koshevoy Gleb2,Nakashima Toshiki3

Affiliation:

1. Faculty of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

2. Institute for Information Transmission Problems Russian Academy of Sciences , Russian Federation

3. Division of Mathematics, Sophia University , Kioicho 7-1, Chiyoda-ku, Tokyo 102-8554, Japan

Abstract

Abstract For a simply connected connected simple algebraic group $G$, it is known that a variety $B_{w_0}^-:=B^-\cap U\overline{w_0}U$ has a geometric crystal structure with a positive structure $\theta ^-_{\textbf{i}}:(\mathbb{C}^{\times })^{l(w_0)}\rightarrow B_{w_0}^-$ for each reduced word $\textbf{i}$ of the longest element $w_0$ of Weyl group. A rational function $\Phi ^h_{BK}=\sum _{i\in I}\Delta _{w_0\Lambda _i,s_i\Lambda _i}$ on $B_{w_0}^-$ is called a half-potential, where $\Delta _{w_0\Lambda _i,s_i\Lambda _i}$ is a generalized minor. Computing $\Phi ^h_{BK}\circ \theta ^-_{\textbf{i}}$ explicitly, we get an explicit form of string cone or polyhedral realization of $B(\infty )$ for the finite dimensional simple Lie algebra $\mathfrak{g}=\textrm{Lie}(G)$. In this paper, for an arbitrary reduced word $\textbf{i}$, we give an algorithm to compute the summand $\Delta _{w_0\Lambda _i,s_i\Lambda _i}\circ \theta ^-_{\textbf{i}}$ of $\Phi ^h_{BK}\circ \theta ^-_{\textbf{i}}$ in the case $i\in I$ satisfies that for any weight $\mu $ of $V(-w_0\Lambda _i)$ and $t\in I$, it holds $\langle h_t,\mu \rangle \in \{2,1,0,-1,-2\}$. In particular, if $\mathfrak{g}$ is of type $\textrm{A}_n$, $\textrm{B}_n$, $\textrm{C}_n$ or $\textrm{D}_n$ then all $i\in I$ satisfy this condition so that one can completely calculate $\Phi ^h_{BK}\circ \theta ^-_{\textbf{i}}$. We will also prove that our algorithm works in the case $\mathfrak{g}$ is of type $\textrm{G}_2$.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference21 articles.

1. Geometric and unipotent crystals. II;Berenstein,2007

2. Tensor product multiplicities, canonical bases and totally positive varieties;Berenstein;Invent. Math.,2001

3. Double Bruhat cells and total positivity;Fomin;J. Amer. Math. Soc.,1999

4. Combinatorics of canonical bases revisited: type a;Genz;Selecta Math. (N.S.),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3