Attaining the Exponent 5/4 for the Sum-Product Problem in Finite Fields

Author:

Mohammadi Ali1,Stevens Sophie2

Affiliation:

1. School of Mathematics, Institute for Research in Fundamental Sciences, 19395-5746 Tehran, Iran

2. Johannn Radon Institute for Computational and Applied Mathematics, 4040 Linz, Austria

Abstract

Abstract We improve the exponent in the finite field sum-product problem from $11/9$ to $5/4$, improving the results of Rudnev et al. [16]. That is, we show that if $A\subset \mathbb {F}_p$ has cardinality $|A|\ll p^{1/2}$, then $ \max \{|A\pm A|,|AA|\} \gtrsim |A|^\frac 54 $ and $ \max \{|A\pm A|,|A/A|\}\gtrsim |A|^\frac 54 $.

Funder

Austrian Science Fund FWF grants

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference28 articles.

1. Growth estimates in positive characteristic via collisions;Aksoy Yazici;Int. Math. Res. Not. IMRN,2017

2. On a variant of sum-product estimates and explicit exponential sum bounds in prime fields;Bourgain;Math. Proc. Cambridge Philos. Soc.,2009

3. A sum-product estimate in finite fields, and applications;Bourgain;Geom. Funct. Anal.,2004

4. A new sum-product estimate over prime fields;Chen;Bull. Austral. Math. Soc.,2019

5. On the number of sums and products;Elekes;Acta Arith.,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A quadratic Vinogradov mean value theorem in finite fields;The Quarterly Journal of Mathematics;2024-07-27

2. On the discretised ABC sum-product problem;T AM MATH SOC;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3