Amalgamation and Injectivity in Banach Lattices

Author:

Avilés Antonio1,Tradacete Pedro2

Affiliation:

1. Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

2. Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) Consejo Superior de Investigaciones Científicas C/ Nicolás Cabrera, 13–15, Campus de Cantoblanco, UAM 28049 Madrid, Spain

Abstract

Abstract We study distinguished objects in the category $\mathcal{B}\mathcal{L}$ of Banach lattices and lattice homomorphisms. The free Banach lattice construction introduced by de Pagter and Wickstead [ 8] generates push-outs, and combining this with an old result of Kellerer [ 17] on marginal measures, the amalgamation property of Banach lattices is established. This will be the key tool to prove that $L_1([0,1]^{\mathfrak{c}})$ is separably $\mathcal{B}\mathcal{L}$-injective, as well as to give more abstract examples of Banach lattices of universal disposition for separable sublattices. Finally, an analysis of the ideals on $C(\Delta ,L_1)$, which is a separably universal Banach lattice as shown by Leung et al. [ 21], allows us to conclude that separably $\mathcal{B}\mathcal{L}$-injective Banach lattices are necessarily non-separable.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference35 articles.

1. An Invitation to Operator Theory;Abramovich,2002

2. A Boolean algebra and a Banach space obtained by push-out iteration;Avilés;Topol. Appl.,2011

3. Lecture Notes in Mathematics;Avilés,2016

4. The free Banach lattice generated by a Banach space;Avilés;J. Funct. Anal.,2018

5. Extension of vector lattice homomorphisms;Bernau;J. London Math. Soc. (2),1986

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Free Objects in Banach Space Theory;RSME Springer Series;2024

2. Stable phase retrieval in function spaces;Mathematische Annalen;2023-11-18

3. Free complex Banach lattices;Journal of Functional Analysis;2023-05

4. A Separable Universal Homogeneous Banach Lattice;International Mathematics Research Notices;2022-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3