Perfect t-Embeddings of Uniformly Weighted Aztec Diamonds and Tower Graphs

Author:

Berggren Tomas1,Nicoletti Matthew2,Russkikh Marianna2

Affiliation:

1. Massachusetts Institute of Technology, Department of Mathematics, 77 Massachusetts Avenue , Cambridge, MA 02139–4307, USA

2. California Institute of Technology, Division of Physics, Mathematics and Astronomy , 1200 E California Blvd, Pasadena, CA 91125, USA

Abstract

Abstract In this work we study a sequence of perfect t-embeddings of uniformly weighted Aztec diamonds. We show that these perfect t-embeddings can be used to prove convergence of gradients of height fluctuations to those of the Gaussian free field. In particular, we provide a first proof of the existence of a model satisfying all conditions of the main theorem of [9]. This confirms the prediction of [10]. An important part of our proof is to exhibit exact integral formulas for perfect t-embeddings of uniformly weighted Aztec diamonds. In addition, we construct and analyze perfect t-embeddings of another sequence of uniformly weighted finite graphs called tower graphs. Although we do not check all technical assumptions of the mentioned theorem for these graphs, we use perfect t-embeddings to derive a simple transformation, which identifies height fluctuations on the tower graph with those of the Aztec diamond.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference39 articles.

1. Anisotropic growth of random surfaces in 2+1 dimensions;Borodin;Comm. Math. Phys.,2014

2. Random tilings and Markov chains for interlacing particles;Borodin;Markov Process. Related Fields,2018

3. Limit shape and height fluctuations of random perfect matchings on square-hexagon lattices;Boutillier;Université de Grenoble. Annales de l’Institut Fourier. Univ. Grenoble I,2021

4. Fluctuations of particle systems determined by Schur generating functions;Bufetov;Advances in Mathematics,2018

5. Asymptotics of random domino tilings of rectangular Aztec diamonds;Bufetov;Annales de l’Institut Henri Poincaré Probabilités et Statistiques,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3