The Simplicial Coalgebra of Chains Under Three Different Notions of Weak Equivalence

Author:

Raptis George1,Rivera Manuel2

Affiliation:

1. Fakultät für Mathematik, Universität Regensburg , 93040 Regensburg, Germany

2. Department of Mathematics, Purdue University, West Lafayette , Indiana, 47907, USA

Abstract

Abstract We study the simplicial coalgebra of chains on a simplicial set with respect to three notions of weak equivalence. To this end, we construct three model structures on the category of reduced simplicial sets for any commutative ring $R$. The weak equivalences are given by: (1) an $R$-linearized version of categorical equivalences, (2) maps inducing an isomorphism on fundamental groups and an $R$-homology equivalence between universal covers, and (3) $R$-homology equivalences. Analogously, for any field ${\mathbb{F}}$, we construct three model structures on the category of connected simplicial cocommutative ${\mathbb{F}}$-coalgebras. The weak equivalences in this context are (1′) maps inducing a quasi-isomorphism of dg algebras after applying the cobar functor, (2′) maps inducing a quasi-isomorphism of dg algebras after applying a localized version of the cobar functor, and (3′) quasi-isomorphisms. Building on a previous work of Goerss in the context of (3)–(3′), we prove that, when ${\mathbb{F}}$ is algebraically closed, the simplicial ${\mathbb{F}}$-coalgebra of chains defines a homotopically full and faithful left Quillen functor for each one of these pairs of model categories. More generally, when ${\mathbb{F}}$ is a perfect field, we compare the three pairs of model categories in terms of suitable notions of homotopy fixed points with respect to the absolute Galois group of ${\mathbb{F}}$.

Publisher

Oxford University Press (OUP)

Reference58 articles.

1. Locally Presentable and Accessible Categories

2. Monomorphisms of coalgebras;Agore;Colloq. Math.,2010

3. Coalgebras over a commutative ring;Barr;J. Algebra,1974

4. Sheafifiable homotopy model categories;Beke;Math. Proc. Cambridge Philos. Soc.,2000

5. The localization of spaces with respect to homology;Bousfield;Topology,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3