On Strongly Inflexible Manifolds

Author:

Costoya Cristina1,Muñoz Vicente2,Viruel Antonio2

Affiliation:

1. CITIC, CITMAga , Departamento de Computación, Universidade da Coruña, 15071-A Coruña, Spain

2. Departamento de Álgebra , Geometría y Topología, Universidad de Málaga, Campus de Teatinos, s/n, 29071 Málaga, Spain

Abstract

Abstract An oriented closed connected $N$-manifold $M$ is inflexible if it does not admit self-maps of unbounded degree. In addition, if all the maps from any other oriented closed connected $N$-manifold have bounded degree, then $M$ is said to be strongly inflexible. The existence of simply-connected inflexible manifolds was established by Arkowitz and Lupton. However, the existence of simply-connected strongly inflexible manifolds is still an open question. We provide an algorithm relying on Sullivan models that allows us to prove that all, but one, of the known examples of simply-connected inflexible manifolds are not strongly inflexible.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference22 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite sets containing zero are mapping degree sets;Advances in Mathematics;2024-11

2. Weight Decompositions on Algebraic Models for Mapping Spaces and Homotopy Automorphisms;Mediterranean Journal of Mathematics;2024-07-11

3. Degrees of maps and multiscale geometry;Forum of Mathematics, Pi;2024

4. Realising sets of integers as mapping degree sets;Bulletin of the London Mathematical Society;2023-02-23

5. Positive weights and self-maps;Proceedings of the American Mathematical Society;2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3