Central Extensions of Lie Groups Preserving a Differential Form

Author:

Diez Tobias123,Janssens Bas3,Neeb Karl-Hermann4,Vizman Cornelia5

Affiliation:

1. Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

2. Institut für Theoretische Physik, Universität Leipzig, 04009 Leipzig, Germany

3. Institute of Applied Mathematics, Delft University of Technology, 2628 XE Delft, The Netherlands

4. Department of Mathematics, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany

5. Department of Mathematics, West University of Timişoara, RO–300223 Timişoara, Romania

Abstract

Abstract Let $M$ be a manifold with a closed, integral $(k+1)$-form $\omega $, and let $G$ be a Fréchet–Lie group acting on $(M,\omega )$. As a generalization of the Kostant–Souriau extension for symplectic manifolds, we consider a canonical class of central extensions of ${\mathfrak{g}}$ by ${\mathbb{R}}$, indexed by $H^{k-1}(M,{\mathbb{R}})^*$. We show that the image of $H_{k-1}(M,{\mathbb{Z}})$ in $H^{k-1}(M,{\mathbb{R}})^*$ corresponds to a lattice of Lie algebra extensions that integrate to smooth central extensions of $G$ by the circle group ${\mathbb{T}}$. The idea is to represent a class in $H_{k-1}(M,{\mathbb{Z}})$ by a weighted submanifold $(S,\beta )$, where $\beta $ is a closed, integral form on $S$. We use transgression of differential characters from $ S$ and $ M $ to the mapping space $ C^\infty (S, M) $ and apply the Kostant–Souriau construction on $ C^\infty (S, M) $.

Funder

Netherlands Organisation for Scientific Research

Romanian Ministry of Research and Innovation, Executive Agency for Higher Education, Research, Development and Innovation

Max Planck Institute for Mathematics in the Sciences

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference36 articles.

1. Categorified symplectic geometry and the classical string;Baez;Comm. Math. Phys.,2010

2. Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique;Banyaga;Comment. Math. Helv.,1978

3. Lecture Notes in Mathematics 2112;Bär,2014

4. On the Group of Automorphisms of a Symplectic Manifold;Calabi,1970

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Induced differential characters on nonlinear Graßmannians;Annales de l'Institut Fourier;2024-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3