On the Convolution Inequality f ≥ f ⋆ f

Author:

Carlen Eric A1,Jauslin Ian2,Lieb Elliott H3,Loss Michael P4

Affiliation:

1. Department of Mathematics, Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

2. Department of Physics, Princeton University, Washington Road, Princeton, NJ 08544, USA

3. Departments of Mathematics and Physics, Princeton University, Washington Road, Princeton, NJ 08544, USA

4. School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Abstract We consider the inequality $f \geqslant f\star f$ for real functions in $L^1({\mathbb{R}}^d)$ where $f\star f$ denotes the convolution of $f$ with itself. We show that all such functions $f$ are nonnegative, which is not the case for the same inequality in $L^p$ for any $1 < p \leqslant 2$, for which the convolution is defined. We also show that all solutions in $L^1({\mathbb{R}}^d)$ satisfy $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x \leqslant \tfrac 12$. Moreover, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$, then $f$ must decay fairly slowly: $\int _{{\mathbb{R}}^{\textrm{d}}}|x| f(x)\ \textrm{d}x = \infty $, and this is sharp since for all $r< 1$, there are solutions with $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x = \tfrac 12$ and $\int _{{\mathbb{R}}^{\textrm{d}}}|x|^r f(x)\ \textrm{d}x <\infty $. However, if $\int _{{\mathbb{R}}^{\textrm{d}}}f(x)\ \textrm{d}x =: a < \tfrac 12$, the decay at infinity can be much more rapid: we show that for all $a<\tfrac 12$, there are solutions such that for some $\varepsilon>0$, $\int _{{\mathbb{R}}^{\textrm{d}}}e^{\varepsilon |x|}f(x)\ \textrm{d}x < \infty $.

Funder

US National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference9 articles.

1. The accuracy of the Gaussian approximation to the sum of independent Variates;Berry;Trans. Amer. Math. Soc.,1941

2. Probabilistic investigation on explosion of solutions of the KAC equation with infinite initial energy;Carlen;J. Appl. Probab.,2008

3. Analysis of a simple equation for the ground state energy of the Bose gas;Carlen,2020

4. Analysis of a simple equation for the ground state of the Bose gas II: monotonicity, convexity and condensate fraction;Carlen

5. A moment inequality with an application to the central limit theorem;Esseen;Skand. Aktuarietidskr.,1942

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential densities and compound Poisson measures;Mathematische Nachrichten;2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3