Boucksom–Zariski and Weyl Chambers on Irreducible Holomorphic Symplectic Manifolds

Author:

Denisi Francesco Antonio1

Affiliation:

1. Université de Lorraine , Institut Elie Cartan de Lorraine, F-54506 Vandœuvre-lès-Nancy Cedex, France

Abstract

Abstract Inspired by the work of Bauer, Küronya, and Szemberg, we provide for the big cone of a projective irreducible holomorphic symplectic (IHS) manifold a decomposition into chambers (which we describe in detail), in each of which the support of the negative part of the divisorial Zariski decomposition is constant. We see how the obtained decomposition of the big cone allows to describe the volume function. Moreover, similarly to the case of surfaces, we see that the big cone of a projective IHS manifold admits a decomposition into simple Weyl chambers, which we compare to that induced by the divisorial Zariski decomposition. To conclude, we determine the structure of the pseudo-effective cone.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference28 articles.

1. A simple proof for the existence of Zariski decompositions on surfaces;Bauer;J. Algebraic Geom.,2009

2. Variétés Kähleriennes dont la première classe de Chern est nulle;Beauville;J. Differential Geom.,1983

3. Weyl and Zariski chambers on K3 surfaces;Bauer;Forum Math.,2012

4. Differentiability of volumes of divisors and a problem of Teissier;Boucksom;J. Algebraic Geom.,2009

5. Zariski chambers, volumes, and stable base loci;Bauer;J. Reine Angew. Math.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3