Cremona Groups Over Finite Fields, Neretin Groups, and Non-Positively Curved Cube Complexes

Author:

Genevois Anthony1,Lonjou Anne23,Urech Christian4

Affiliation:

1. Institut Montpellierain Alexander Grothendieck , 499-554 Rue du Truel, 34090 Montpellier, France

2. Departamento de Matemáticas , UPV/EHU, Sarriena s/n, 48940, Leioa - Bizkaia, Spain

3. IKERBASQUE , Basque Foundation for Science, Bilbao - Bizkaia 48013, Spain

4. EPFL , SB MATH, Station 8, CH-1015 Lausanne, Switzerland

Abstract

Abstract We show that plane Cremona groups over finite fields embed as dense subgroups into Neretin groups, that is, groups of almost automorphisms of rooted trees. We also show that if the finite base field has even characteristic and contains at least four elements, then the permutations induced by birational transformations on rational points of regular projective surfaces are even. In a second part, we construct explicit locally compact CAT(0) cube complexes, on which Neretin groups act properly. This allows us to recover in a unified way various results on Neretin groups such as that they are of type $F_{\infty }$. We also prove a new fixed-point theorem for CAT(0) cube complexes without infinite cubes and use it to deduce a regularization theorem for plane Cremona groups over finite fields.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference43 articles.

1. Biregular Cremona transformations of the plane;Asgarli,2022

2. Superextensions and the depth of median graphs;Bandelt;J. Combin. Theory Ser. A,2022

3. Birational permutations;Cantat;C. R. Math. Acad. Sci. Paris,2009

4. The Cremona group;Cantat,2018

5. Normal subgroups in the Cremona group;Cantat;Acta Math.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3