Uniform Rectifiability, Elliptic Measure, Square Functions, and ε-Approximability Via an ACF Monotonicity Formula

Author:

Azzam Jonas1,Garnett John2,Mourgoglou Mihalis3,Tolsa Xavier4

Affiliation:

1. School of Mathematics, University of Edinburgh, JCMB, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JZ, Scotland

2. Department of Mathematics, 6363 Math Sciences Building, University of California at Los Angeles, Los Angeles, California 90095-1555

3. Departamento de Matemáticas, Universidad del País Vasco, Barrio Sarriena s/n 48940 Leioa, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain

4. ICREA, Passeig Lluís Companys 23 08010 Barcelona, Catalonia, and Departament de Matemàtiques and BGSMath, Universitat Autònoma de Barcelona, Edifici C Facultat de Ciències, 08193 Bellaterra (Barcelona), Catalonia

Abstract

Abstract Let $\Omega \subset{{\mathbb{R}}}^{n+1}$, $n\geq 2$, be an open set with Ahlfors regular boundary that satisfies the corkscrew condition. We consider a uniformly elliptic operator $L$ in divergence form associated with a matrix $A$ with real, merely bounded and possibly nonsymmetric coefficients, which are also locally Lipschitz and satisfy suitable Carleson type estimates. In this paper we show that if $L^*$ is the operator in divergence form associated with the transpose matrix of $A$, then $\partial \Omega $ is uniformly $n$-rectifiable if and only if every bounded solution of $Lu=0$ and every bounded solution of $L^*v=0$ in $\Omega $ is $\varepsilon $-approximable if and only if every bounded solution of $Lu=0$ and every bounded solution of $L^*v=0$ in $\Omega $ satisfies a suitable square-function Carleson measure estimate. Moreover, we obtain two additional criteria for uniform rectifiability. One is given in terms of the so-called “$S<N$” estimates, and another in terms of a suitable corona decomposition involving $L$-harmonic and $L^*$-harmonic measures. We also prove that if $L$-harmonic measure and $L^*$-harmonic measure satisfy a weak $A_\infty $-type condition, then $\partial \Omega $ is $n$-uniformly rectifiable. In the process we obtain a version of the Alt-Caffarelli-Friedman monotonicity formula for a fairly wide class of elliptic operators which is of independent interest and plays a fundamental role in our arguments.

Funder

NSF

IKERBASQUE

Ministerio de Economía y Competitividad

European Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference48 articles.

1. An optimization problem in heat conduction;Aguilera;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),1987

2. Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David Regular boundaries;Akman;Trans. Amer. Math. Soc.,2017

3. Rectifiability of harmonic measure;Azzam;Geom. Funct. Anal. (GAFA),2016

4. Tangent measures and densities of harmonic measure;Azzam;Rev. Mat. Iberoam.,2018

5. Mutual absolute continuity of interior and exterior harmonic measure implies rectifiability;Azzam;Comm. Pure Appl. Math.,2017

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3