Affiliation:
1. Technische Universität , Berlin Institut für Mathematik, Str. des 17. Juni 136, 10623 Berlin, Germany
Abstract
Abstract
We discuss a notion of discrete conformal equivalence for decorated piecewise Euclidean surfaces (PE-surface), that is, PE-surfaces with a choice of circle about each vertex. It is closely related to inversive distance and hyperideal circle patterns. Under the assumption that the circles are non-intersecting, we prove the corresponding discrete uniformization theorem. The uniformization theorem for discrete conformal maps corresponds to the special case that all circles degenerate to points. Our proof relies on an intimate relationship between decorated PE-surfaces, canonical tessellations of hyperbolic surfaces and convex hyperbolic polyhedra. It is based on a concave variational principle, which also provides a method for the computation of decorated discrete conformal maps.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献