Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic

Author:

Obus Andrew1,Srinivasan Padmavathi2

Affiliation:

1. Baruch College, 1 Bernard Baruch Way, New York , NY 10010, USA

2. ICERM, Brown University, 121 South Main Street , 11th Floor, Providence, RI 02903, USA

Abstract

AbstractWe prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not $2$. Specifically, if such a curve is given by $y^{2} = f(x)$ with $f(x) \in \mathcal{O}_{K}[x]$, and if $\mathcal{X}$ is its minimal regular model over $\mathcal{O}_{K}$, then the negative of the Artin conductor of $\mathcal{X}$ (and thus also the number of irreducible components of the special fiber of $\mathcal{X}$) is bounded above by the valuation of $\operatorname{disc}(f)$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $f$. This generalizes earlier work of Ogg, Saito, Liu, and the second author.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference16 articles.

1. Computing L-functions and semistable reduction of superel- liptic curves;Irene;Glasgow Math. J.,2017

2. Conductor and discrim- inant of Picard curves;Bouw;J. Lond. Math. Soc. (2),2020

3. Arithmetic of hyper- elliptic curves over local fields;Dokchitser,2023

4. Algebraic Geometry;Hartshorne,1977

5. A discriminant and an upper bound for ${\omega }^2$ for hyperelliptic arithmetic surfaces;Kausz;Compositio Math.,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2‐Selmer parity for hyperelliptic curves in quadratic extensions;Proceedings of the London Mathematical Society;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3