Mirror Symmetry for a Cusp Polynomial Landau–Ginzburg Orbifold

Author:

Basalaev Alexey1,Takahashi Atsushi2

Affiliation:

1. Faculty of Mathematics, National Research University Higher School of Economics, Usacheva str., 6, 119048 Moscow, Russian Federation, and Skolkovo Institute of Science and Technology, Nobelya str., 3, 121205 Moscow, Russian Federation

2. Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan

Abstract

Abstract For any triple of positive integers $A^{\prime} = (a_1^{\prime},a_2^{\prime},a_3^{\prime})$ and $c \in{{\mathbb{C}}}^*$, cusp polynomial ${ f_{A^\prime }} = x_1^{a_1^{\prime}}+x_2^{a_2^{\prime}}+x_3^{a_3^{\prime}}-c^{-1}x_1x_2x_3$ is known to be mirror to Geigle–Lenzing orbifold projective line ${{\mathbb{P}}}^1_{a_1^{\prime},a_2^{\prime},a_3^{\prime}}$. More precisely, with a suitable choice of a primitive form, the Frobenius manifold of a cusp polynomial ${ f_{A^\prime }}$ turns out to be isomorphic to the Frobenius manifold of the Gromov–Witten theory of ${{\mathbb{P}}}^1_{a_1^{\prime},a_2^{\prime},a_3^{\prime}}$. In this paper we extend this mirror phenomenon to the equivariant case. Namely, for any $G$—a symmetry group of a cusp polynomial ${ f_{A^\prime }}$, we introduce the Frobenius manifold of a pair  $({ f_{A^\prime }},G)$ and show that it is isomorphic to the Frobenius manifold of the Gromov–Witten theory of Geigle–Lenzing weighted projective line ${{\mathbb{P}}}^1_{A,\Lambda }$, indexed by another set $A$ and $\Lambda $, distinct points on ${{\mathbb{C}}}\setminus \{0,1\}$. For some special values of $A^{\prime}$ with the special choice of $G$ it happens that ${{\mathbb{P}}}^1_{A^{\prime}} \cong{{\mathbb{P}}}^1_{A,\Lambda }$. Combining our mirror symmetry isomorphism for the pair $(A,\Lambda )$, together with the “usual” one for $A^{\prime}$, we get certain identities of the coefficients of the Frobenius potentials. We show that these identities are equivalent to the identities between the Jacobi theta constants and Dedekind eta–function.

Funder

Russian Science Foundation

Japan Society for the Science Promotion

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference28 articles.

1. Gromov–Witten theory of Deligne–Muford stacks;Abramovich;Amer. J. Math.,2008

2. Orbifold GW theory as the Hurwitz–Frobenius submanifold;Basalaev;J. Geom. Phys.,2014

3. Elliptic orbifolds potentials;Basalaev,2015

4. 6-dimensional FJRW theories of the simple-elliptic singularities;Basalaev,2016

5. Givental-type reconstruction at a non-semisimple point, Michigan;Basalaev;Math. J.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3