qRSt: A Probabilistic Robinson–Schensted Correspondence for Macdonald Polynomials

Author:

Aigner Florian1,Frieden Gabriel1

Affiliation:

1. LaCIM, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada

Abstract

Abstract We present a probabilistic generalization of the Robinson–Schensted correspondence in which a permutation maps to several different pairs of standard Young tableaux with nonzero probability. The probabilities depend on two parameters $q$ and $t$, and the correspondence gives a new proof of the squarefree part of the Cauchy identity for Macdonald polynomials (i.e., the equality of the coefficients of $x_1 \cdots x_n y_1 \cdots y_n$ on either side, which are related to permutations and standard Young tableaux). By specializing $q$ and $t$ in various ways, one recovers the row and column insertion versions of the Robinson–Schensted correspondence, several $q$- and $t$-deformations of row and column insertion which have been introduced in recent years in connection with $q$-Whittaker and Hall–Littlewood processes, and the Plancherel measure on partitions. Our construction is based on Fomin’s growth diagrams and the recently introduced notion of a probabilistic bijection between weighted sets.

Funder

Austrian Science Fund

Centre de Recherches Mathématiques - Institut des Sciences Mathématiques

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. Nearest neighbor Markov dynamics on Macdonald processes;Borodin;Advances in Mathematics,2016

2. Hall–Littlewood RSK field;Bufetov;Selecta Math. (N.S.),2018

3. Law of large numbers for infinite random matrices over a finite field;Bufetov;Selecta Math. (N.S.),2015

4. Four correspondences between graphs and generalized Young tableaux;Burge;J. Combin. Theory Ser. A,1974

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RSK in last passage percolation: a unified approach;Probability Surveys;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3