Localization Properties of High-Energy Eigenfunctions on Flat Tori

Author:

Enciso Alberto1,García-Ruiz Alba1,Peralta-Salas Daniel1

Affiliation:

1. Instituto de Ciencias Matemáticas , Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain

Abstract

Abstract We consider the question of when the Laplace eigenfunctions on an arbitrary flat torus ${\mathbb {T}}_\Gamma :={\mathbb {R}}^d/\Gamma $ are flexible enough to approximate, over the natural length scale of order $1/\sqrt \lambda $ where $\lambda \gg 1$ is the eigenvalue, an arbitary solution of the Helmholtz equation $\Delta h + h=0$ on ${\mathbb {R}}^d$. This problem is motivated by the fact that, by the asymptotics for the local Weyl law, “approximate Laplace eigenfunctions” do have this approximation property on any compact Riemannian manifold. What we find is that the answer depends solely on the arithmetic properties of the spectrum. Specifically, recall that the eigenvalues of ${\mathbb {T}}_\Gamma $ are of the form $\lambda _k=Q_\Gamma (k)$, where $Q_\Gamma $ is a quadratic form and $k\in {\mathbb {Z}}^d$. Our main result is that the eigenfunctions of ${\mathbb {T}}_\Gamma $ have the desired approximation property if and only if $Q_\Gamma $ is a multiple of a quadratic form with integer coefficients. In particular, the set of lattices $\Gamma $ for which this approximation property holds has measure zero but includes all rational lattices. A consequence of this fact is that when $Q_\Gamma $ is a multiple of a quadratic form with integer coefficients, Laplace eigenfunctions exhibit an extremely flexible behavior over scales of order $1/\sqrt \lambda $. In particular, there are eigenfunctions of arbitrarily high energy that exhibit nodal components diffeomorphic to any compact hypersurface of diameter $O(1/\sqrt \lambda )$.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3