Thin Polytopes: Lattice Polytopes With Vanishing Local h*-Polynomial

Author:

Borger Christopher1,Kretschmer Andreas1,Nill Benjamin1

Affiliation:

1. Faculty of Mathematics, Otto-von-Guericke-Universität Magdeburg , Universitätsplatz 2, 39106 Magdeburg, Germany

Abstract

Abstract In this paper, we study the novel notion of thin polytopes: lattice polytopes whose local $h^{*}$-polynomials vanish. The local $h^{*}$-polynomial is an important invariant in modern Ehrhart theory. Its definition goes back to Stanley with fundamental results achieved by Karu, Borisov, and Mavlyutov; Schepers; and Katz and Stapledon. The study of thin simplices was originally proposed by Gelfand, Kapranov, and Zelevinsky, where in this case the local $h^{*}$-polynomial simply equals its so-called box polynomial. Our main results are the complete classification of thin polytopes up to dimension 3 and the characterization of thinness for Gorenstein polytopes. The paper also includes an introduction to the local $h^{*}$-polynomial with a survey of previous results.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference49 articles.

1. Beyond positivity in Ehrhart Theory;Adiprasito,2022

2. Flag subdivisions and $\gamma $-vectors;Athanasiadis;Pacific J. Math.,2012

3. Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three;Averkov;Math. Oper. Res.,2011

4. A database of “small” lattice polytopes;Balletti

5. On empty lattice simplices in dimension 4;Barile;Proc. Amer. Math. Soc.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3