Affiliation:
1. Dipartimento di Matematica “Federigo Enriques” , Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milan, Italy
Abstract
Abstract
Given $N\geq 2$, we completely classify solutions to the anisotropic $N$-Liouville equation
$$ \begin{align*} &-\Delta_N^H\,u=e^u \quad\textrm{in}\ \mathbb{R}^N,\end{align*} $$
under the finite mass condition $\int _{\mathbb{R}^{N}} e^{u}\,dx<+\infty $. Here $\Delta _{N}^{H}$ is the so-called Finsler $N$-Laplacian induced by a positively homogeneous function $H$. As a consequence in the planar case $N=2$, we give an affirmative answer to a conjecture made in [ 53].
Funder
Research Project of the Italian Ministry of University and Research
“Gruppo Nazionale per l’Analisi Matematica
Publisher
Oxford University Press (OUP)