Rigidity of Lagrangian embeddings into symplectic tori and K3 surfaces

Author:

Entov Michael1,Verbitsky Misha2

Affiliation:

1. Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel

2. Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina, 110 Jardim Botânico, CEP 22460-320 Rio de Janeiro, RJ, Brasil, and Faculty of Mathematics, Laboratory of Algebraic Geometry, National Research University HSE, 6 Usacheva Str., Moscow, Russia

Abstract

Abstract A Kähler-type form is a symplectic form compatible with an integrable complex structure. Let $M$ be either a torus or a K3-surface equipped with a Kähler-type form. We show that the homology class of any Maslov-zero Lagrangian torus in $M$ has to be nonzero and primitive. This extends previous results of Abouzaid and Smith (for tori) and Sheridan and Smith (for K3-surfaces) who proved it for particular Kähler-type forms on $M$. In the K3 case, our proof uses dynamical properties of the action of the diffeomorphism group of $M$ on the space of the Kähler-type forms. These properties are obtained using Shah’s arithmetic version of Ratner’s orbit closure theorem.

Funder

Russian Academic Excellence Project “5-100”

FAPERJ

CNPq - Process

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3