Components in Meandric Systems and the Infinite Noodle

Author:

Féray Valentin1,Thévenin Paul2

Affiliation:

1. Université de Lorraine , CNRS, IECL, F-54000 Nancy, France

2. Ångström Laboratory , Lägerhyddsvägen 1, 752 37 Uppsala, Sweden

Abstract

Abstract We investigate here the asymptotic behaviour of a large, typical meandric system. More precisely, we show the quenched local convergence of a random uniform meandric system $\boldsymbol {M}_n$ on $2n$ points, as $n \rightarrow \infty $, towards the infinite noodle introduced by Curien et al. [3]. As a consequence, denoting by $cc( \boldsymbol {M}_n)$ the number of connected components of $\boldsymbol {M}_n$, we prove the convergence in probability of $cc(\boldsymbol {M}_n)/n$ to some constant $\kappa $, answering a question raised independently by Goulden–Nica–Puder [8] and Kargin [12]. This result also provides information on the asymptotic geometry of the Hasse diagram of the lattice of non-crossing partitions. Finally, we obtain expressions of the constant $\kappa $ as infinite sums over meanders, which allows us to compute upper and lower approximations of $\kappa $.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference17 articles.

1. Recurrence of distributional limits of finite planar graphs;Benjamini;Electron. J. Probab.,2001

2. Asymptotic normality of consecutive patterns in permutations encoded by generating trees with one-dimensional labels;Borga;Random Structures Algorithms,2021

3. Uniqueness of the infinite noodle;Curien;Ann. Inst. Henri Poincaré D,2019

4. Enumeration of meanders and Masur–Veech volumes;Delecroix;Forum Math. Pi,2020

5. Meander, folding, and arch statistics;Di Francesco;Math. Comput. Modelling,1997

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Central limit theorem for components in meandric systems through high moments;Combinatorics, Probability and Computing;2024-04-29

2. Wiener Indices of Minuscule Lattices;The Electronic Journal of Combinatorics;2024-02-23

3. Generating series and matrix models for meandric systems with one shallow side;Annales de l’Institut Henri Poincaré D, Combinatorics, Physics and their Interactions;2024-01-31

4. Erratum to Components in Meandric Systems and the Infinite Noodle;International Mathematics Research Notices;2023-12-04

5. On the Geometry of Uniform Meandric Systems;Communications in Mathematical Physics;2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3