Nodal Decompositions of a Symmetric Matrix

Author:

McKenzie Theo1,Urschel John2

Affiliation:

1. Department of Mathematics , Stanford University, Stanford, CA, USA

2. Department of Mathematics , Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

Abstract Analyzing nodal domains is a way to discern the structure of eigenvectors of operators on a graph. We give a new definition extending the concept of nodal domains to arbitrary signed graphs, and therefore to arbitrary symmetric matrices. We show that for an arbitrary symmetric matrix, a positive fraction of eigenbases satisfy a generalized version of known nodal bounds for un-signed (that is classical) graphs. We do this through an explicit decomposition. Moreover, we show that with high probability, the number of nodal domains of a bulk eigenvector of the adjacency matrix of a signed Erdős-Rényi graph is $\Omega (n/\log n)$ and $o(n)$.

Publisher

Oxford University Press (OUP)

Reference66 articles.

1. On Courant’s nodal domain theorem;Alessandrini;Forum Math.,1998

2. Quantum graphs–generic eigenfunctions and their nodal count and neumann count statistics;Alon,2020

3. Nodal statistics on quantum graphs;Alon;Comm. Math. Phys.,2018

4. Universality of nodal count distribution in large metric graphs;Alon;Experiment. Math.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3