Group C*-Algebras of Locally Compact Groups Acting on Trees

Author:

Heinig Dennis1,de Laat Tim1,Siebenand Timo1

Affiliation:

1. University of Münster , Mathematical Institute, Einsteinstraße 62, 48149 Münster, Germany

Abstract

Abstract It was proved by Samei and Wiersma that for every non-compact, closed subgroup $G$ of the automorphism group $\textrm {Aut}(T)$ of a (semi-)homogeneous tree $T$ acting transitively on the boundary $\partial T$ and every $2 \leq q < p \leq \infty $, the quotient map $C^{\ast }_{L^{p+}}(G) \twoheadrightarrow C^{\ast }_{L^{q+}}(G)$ is not injective. We prove that whenever $G$, moreover, acts transitively on the vertices of $T$ and has Tits’s independence property, the group $C^{\ast }$-algebras $C^{\ast }_{L^{p+}}(G)$ are the only group $C^{\ast }$-algebras of $G$ coming from ideals of the Fourier–Stieltjes algebra. We also show that given such a group $G$, every group $C^{\ast }$-algebra $C^{\ast }_{\mu }(G)$ that is distinguishable from $C^{\ast }(G)$ and whose dual space $C^{\ast }_{\mu }(G)^{\ast }$ is an ideal in $B(G)$ is abstractly $^{\ast}$-isomorphic to $C^{\ast }_{r}(G)$.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference35 articles.

1. Groups of tree-automorphisms and their unitary representations;Amann,2003

2. Sur l’espace de Banach engendré par les coefficients d’une représentation unitaire;Arsac;Publ. Dép. Math. (Lyon),1976

3. Strong Novikov conjecture for low degree cohomology and exotic group ${C}^{\ast } $-algebras;Antonini;Trans. Amer. Math. Soc.,2021

4. Expanders, exact crossed products, and the Baum–Connes conjecture;Baum;Ann. K-Theory,2016

5. Kazhdan's Property (T)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3