On the Stability of the Equator Map for Higher Order Energy Functionals

Author:

Fardoun A1,Montaldo S2,Ratto A2

Affiliation:

1. Laboratoire de Mathématiques LMBA, UFR Sciences et Techniques, Université de Bretagne Occidentale, 6, Av. Victor Le Gorgeu, B.P. 809, 29285 Brest Cedex, France

2. Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09124 Cagliari, Italia

Abstract

Abstract Let $B^n\subset \mathbb{R} ^{n}$ and $\mathbb{S} ^n\subset \mathbb{R} ^{n+1}$ denote the Euclidean $n$-dimensional unit ball and sphere, respectively. The extrinsic $k$-energy functional is defined on the Sobolev space $W^{k,2}\left (B^n,\mathbb{S} ^n \right )$ as follows: $E_{k}^{{\textrm{ext}}}(u)=\int _{B^n}|\Delta ^s u|^2\ dx$ when $k=2s$, and $E_{k}^{{\textrm{ext}}}(u)=\int _{B^n}|\nabla \Delta ^s u|^2\ dx$ when $k=2s+1$. These energy functionals are a natural higher order version of the classical extrinsic bienergy, also called Hessian energy. The equator map $u^*: B^n \to \mathbb{S} ^n$, defined by $u^*(x)=(x/|x|,0)$, is a critical point of $E_{k}^{{\textrm{ext}}}(u)$ provided that $n \geq 2k+1$. The main aim of this paper is to establish necessary and sufficient conditions on $k$ and $n$ under which $u^*: B^n \to \mathbb{S} ^n$ is minimizing or unstable for the extrinsic $k$-energy.

Funder

Fondazione di Sardegna

Regione Autonoma della Sardegna

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. Large solutions for biharmonic maps in four dimensions;Angelsberg;Calc. Var. Partial Differential Equations,2007

2. Higher order energy functionals;Branding;Adv. Math.,2020

3. A regularity theory of biharmonic maps;Chang;Comm. Pure Appl. Math.,1999

4. Selected topics in harmonic maps;Eells,1983

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On polyharmonic helices in space forms;Archiv der Mathematik;2023-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3