Interlacing Polynomial Method for the Column Subset Selection Problem

Author:

Cai Jian-Feng1,Xu Zhiqiang23,Xu Zili1

Affiliation:

1. Department of Mathematics, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China

2. LSEC, Inst. Comp. Math., Academy of Mathematics and System Science , Chinese Academy of Sciences, Beijing, 100091, China

3. School of Mathematical Sciences, University of Chinese Academy of Sciences , Beijing, 100049, China

Abstract

Abstract This paper investigates the spectral norm version of the column subset selection problem. Given a matrix $\textbf{A}\in \mathbb{R}^{n\times d}$ and a positive integer $k\leq \textrm{rank}(\textbf{A})$, the objective is to select exactly $k$ columns of $\textbf{A}$ that minimize the spectral norm of the residual matrix after projecting $\textbf{A}$ onto the space spanned by the selected columns. We use the method of interlacing polynomials introduced by Marcus–Spielman–Srivastava to derive a new upper bound on the minimal approximation error. This new bound is asymptotically sharp when the matrix $\textbf{A}\in \mathbb{R}^{n\times d}$ obeys a spectral power-law decay. The relevant expected characteristic polynomial is a variation of the expected polynomial for the restricted invertibility problem, incorporating two extra variable substitution operators. Finally, we propose a deterministic polynomial-time algorithm that achieves this error bound up to a computational error.

Publisher

Oxford University Press (OUP)

Reference47 articles.

1. Extensions, restrictions, and representations of states on ${C}^{\ast } $-algebras;Anderson;Trans. Amer. Math. Soc.,1979

2. Extreme points in sets of positive linear maps on $\mathcal{B}\left (\mathcal{H}\right )$;Anderson;J. Funct. Anal.,1979

3. A conjecture concerning the pure states of $\mathcal{B}\left (\mathcal{H}\right )$ and a related theorem;Anderson,1981

4. Spectral gap error bounds for improving CUR matrix decomposition and the Nyström method;Anderson,2015

5. High-dimensional matched subspace detection when data are missing;Balzano,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3