Graded Specht Modules as Bernstein–Zelevinsky Derivatives of the RSK Model

Author:

Gurevich Maxim1

Affiliation:

1. Department of Mathematics , Technion – Israel Institute of Technology, Haifa 3200003, Israel

Abstract

Abstract We clarify the links between the graded Specht construction of modules over cyclotomic Hecke algebras and the Robinson-Schensted-Knuth (RSK) construction for quiver Hecke algebras of type $A$, which was recently imported from the setting of representations of $p$-adic groups. For that goal we develop a theory of crystal derivative operators on quiver Hecke algebra modules that categorifies the Berenstein–Zelevinsky strings framework on quantum groups and generalizes a graded variant of the classical Bernstein–Zelevinsky derivatives from the $p$-adic setting. Graded cyclotomic decomposition numbers are shown to be a special subfamily of the wider concept of RSK decomposition numbers.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference53 articles.

1. On the decomposition numbers of the Hecke algebra of $G\left (m,1,n\right )$;Ariki;J. Math. Kyoto Univ.,1996

2. On the classification of simple modules for cyclotomic Hecke algebras of type $G\left (m,1,n\right )$ and Kleshchev multipartitions;Ariki;Osaka J. Math.,2001

3. “Schurian-finiteness of blocks of type $a$ Hecke algebras;Ariki

4. “Representation Theory of Symmetric Groups and Their Double Covers;Brundan,2003

5. Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras;Brundan;Invent. Math.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Analogue of Ladder Representations for Classical Groups;International Mathematics Research Notices;2024-02-05

2. Simple modules for quiver Hecke algebras and the Robinson–Schensted–Knuth correspondence;Journal of the London Mathematical Society;2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3