Affiliation:
1. Graduate School of Mathematics, Nagoya University, Nagoya 464-8601, Japan
Abstract
Abstract
We study $g$-vector cones associated with clusters of cluster algebras defined from a marked surface $(S,M)$ of rank $n$. We determine the closure of the union of $g$-vector cones associated with all clusters. It is equal to $\mathbb{R}^n$ except for a closed surface with exactly one puncture, in which case it is equal to the half space of a certain explicit hyperplane in $\mathbb{R}^n$. Our main ingredients are laminations on $(S,M)$, their shear coordinates, and their asymptotic behavior under Dehn twists. As an application, if $(S,M)$ is not a closed surface with exactly one puncture, the exchange graph of cluster tilting objects in the corresponding cluster category is connected. If $(S,M)$ is a closed surface with exactly one puncture, it has precisely two connected components.
Funder
Japan Society for the Promotion of Science
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献