A Littlewood-Type Theorem for Random Bergman Functions

Author:

Cheng Guozheng1,Fang Xiang2,Liu Chao1

Affiliation:

1. School of Mathematical Science, Dalian University of Technology, Dalian 116024, P. R. China

2. Department of Mathematics, National Central University, Chungli 32001, Taiwan (R.O.C)

Abstract

Abstract Let $f(z)=\sum _{n=0}^{\infty }a_n z^n$ be a formal power series with complex coefficients. Let $({\mathcal{R}} f)(z)= \sum _{n=0}^{\infty }\pm a_n z^n$ be the randomization of $f$ by choosing independently a random sign for each coefficient. Let $H^p({\mathbb{D}})$ and $L^p_a({\mathbb{D}})$  $(p>0)$ denote the Hardy space and the Bergman space, respectively, over the unit disk in the complex plane. In 1930, Littlewood proved that if $f \in H^2({\mathbb{D}})$, then ${\mathcal{R}} f \in H^p({\mathbb{D}})$ for any $p \in (0, \infty )$ almost surely, and if $f \notin H^2({\mathbb{D}})$, then ${\mathcal{R}} f \notin H^p({\mathbb{D}})$ for any $p \in (0, \infty )$ almost surely. In this paper, we obtain a characterization of the pairs $(p, q) \in (0, \infty )^2$ such that ${\mathcal{R}} f$ is almost surely in $L^q_a({\mathbb{D}})$ whenever $f \in L^p_a({\mathbb{D}})$, including counterexamples to show the optimality of the embedding. In contrast to Littlewood’s theorem, random Bergman functions exhibit no improvement of regularity for any $p>0$, but the loss of regularity for $p<2$ is not as drastic as the Hardy case; there is indeed a nontrivial boundary curve given by $\frac{1}{q}-\frac{2}{p}+\frac{1}{2}=0$. Several other results about random Bergman functions are established along the way. The technical difficulties, especially when $p<1$, are different from the Hardy space and we devise a different route of proof. The Dirichlet space follows as a corollary. An improvement of the original Littlewood theorem is obtained.

Funder

National Nature Science Foundation of China

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference58 articles.

1. On Bloch functions and normal functions;Anderson;J. Reine Angew. Math.,1974

2. Multiplier on space of analytic functions;Blasco;Canad. J. Math.,1995

3. Universality and scaling of correlations between zeros on complex manifolds;Bleher;Invent. Math.,2000

4. Séries de Fourier aléatoirement bornées, continues, uniformément convergentes;Billard;Studia Math.,1963

5. A Blaschke-type product and random zero sets for Bergman spaces;Bomash;Ark. Mat.,1992

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solid bases and functorial constructions for (p-)Banach spaces of analytic functions;Proceedings of the Edinburgh Mathematical Society;2024-09-09

2. Littlewood-type theorems for Hardy spaces in infinitely many variables;Bulletin des Sciences Mathématiques;2024-07

3. Random analytic functions with a prescribed growth rate in the unit disk;Canadian Journal of Mathematics;2024-04-26

4. A characterization of random analytic functions satisfying Blaschke-type conditions;Canadian Mathematical Bulletin;2024-01-17

5. Two problems on random analytic functions in Fock spaces;Canadian Journal of Mathematics;2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3