RCD*(K,N) Spaces and the Geometry of Multi-Particle Schrödinger Semigroups

Author:

Güneysu Batu1

Affiliation:

1. Institut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 12489 Berlin, Germany

Abstract

Abstract Dedicated to the memory of Kazumasa Kuwada. Let $(X,\mathfrak{d},{\mathfrak{m}})$ be an $\textrm{RCD}^*(K,N)$ space for some $K\in{\mathbb{R}}$, $N\in [1,\infty )$, and let $H$ be the self-adjoint Laplacian induced by the underlying Cheeger form. Given $\alpha \in [0,1]$, we introduce the $\alpha$-Kato class of potentials on $(X,\mathfrak{d},{\mathfrak{m}})$, and given a potential $V:X\to{\mathbb{R}}$ in this class, we denote with $H_V$ the natural self-adjoint realization of the Schrödinger operator $H+V$ in $L^2(X,{\mathfrak{m}})$. We use Brownian coupling methods and perturbation theory to prove that for all $t>0$, there exists an explicitly given constant $A(V,K,\alpha ,t)<\infty$, such that for all $\Psi \in L^{\infty }(X,{\mathfrak{m}})$, $x,y\in X$ one has $$\begin{align*}\big|e^{-tH_V}\Psi(x)-e^{-tH_V}\Psi(y)\big|\leq A(V,K,\alpha,t) \|\Psi\|_{L^{\infty}}\mathfrak{d}(x,y)^{\alpha}.\end{align*}$$In particular, all $L^{\infty }$-eigenfunctions of $H_V$ are globally $\alpha$-Hölder continuous. This result applies to multi-particle Schrödinger semigroups and, by the explicitness of the Hölder constants, sheds some light into the geometry of such operators.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. Brownian motion and Harnack inequality for Schrödinger operators;Aizenman;Comm. Pure Appl. Math.,1982

2. Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates;Alonso-Ruiz,2020

3. Density of Lipschitz functions and equiva-lence of weak gradients in metric measure spaces;Ambrosio;Rev. Mat. Iberoam.,2013

4. Bakry–Emery curvature condition and Riemannian Ricci curvature bounds;Ambrosio;Ann. Prob.,2015

5. Metric measure spaces with Riemannian Ricci curvature bounded from below;Ambrosio;Duke Math. J.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3