Affiliation:
1. Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
Abstract
Abstract
We describe spectral data for singular fibres of the $\textsf{SL}(2,{\mathbb{C}})$-Hitchin fibration with irreducible and reduced spectral curve. Using Hecke transformations, we give a stratification of these singular spaces by fibre bundles over Prym varieties. By analysing the parameter spaces of Hecke transformations, this describes the singular Hitchin fibres as compactifications of abelian group bundles over abelian torsors. We prove that a large class of singular fibres are themselves fibre bundles over Prym varieties. As applications, we study irreducible components of singular Hitchin fibres and give a description of $\textsf{SL}(2,{\mathbb{R}})$-Higgs bundles in terms of these semi-abelian spectral data.
Funder
Deutsche Forschungsgemeinschaft
Klaus Tschira Foundation
U.S. National Science Foundation
Publisher
Oxford University Press (OUP)
Reference38 articles.
1. The geometry of maximal components of the $\mathsf{PSp}\left (4,\mathbb{R}\right )$ character variety;Alessandrini;Geom. Topol,2019
2. Nilpotent Higgs bundles and minimal surfaces in hyperbolic 3-space;Alessandrini,2020
3. $\textrm{SO}\left (\textrm{p},\textrm{q}\right )$-Higgs bundles and higher Teichmüller components;Aparicio-Arroyo;Invent. Math,2019
4. Non-abelian vortices, Hecke modifications and singular monopoles;Baptista;Lett. Math. Phys,2010
5. Spectral curves and the generalized theta divisor;Beauville;J. Reine Angew. Math,1989
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献