A Generalization of Steinberg Theory and an Exotic Moment Map

Author:

Fresse Lucas1,Nishiyama Kyo2

Affiliation:

1. Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, F-54506, France

2. Department of Mathematics, Aoyama Gakuin University, Fuchinobe 5-10-1, Chuo-ku, Sagamihara 252-5258, Japan

Abstract

Abstract For a reductive group $G$, Steinberg established a map from the Weyl group to the set of nilpotent $G$-orbits by using moment maps on double flag varieties. In particular, in the case of the general linear group, it provides a geometric interpretation of the Robinson–Schensted correspondence between permutations and pairs of standard tableaux of the same shape. We extend Steinberg’s approach to the case of a symmetric pair $(G, K)$ to obtain two different maps, namely a generalized Steinberg map and an exotic moment map. Although the framework is general, in this paper we focus on the pair $(G,K) = (\textrm{GL}_{2n}({\mathbb{C}}), \textrm{GL}_n({\mathbb{C}}) \times \textrm{GL}_n({\mathbb{C}}))$. Then the generalized Steinberg map is a map from partial permutations to the pairs of nilpotent orbits in $ \mathfrak{gl}_n({\mathbb{C}}) $. It involves a generalization of the classical Robinson–Schensted correspondence to the case of partial permutations. The other map, the exotic moment map, establishes a combinatorial map from the set of partial permutations to that of signed Young diagrams, that is, the set of nilpotent $ K$-orbits in the Cartan space $(\textrm{Lie}(G)/\textrm{Lie}(K))^* $. We explain the geometric background of the theory and combinatorial algorithms, which produce the above-mentioned maps.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference23 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Action of Hecke algebra on the double flag variety of type AIII;Advances in Applied Mathematics;2024-02

2. On generalized Steinberg theory for type AIII;Algebraic Combinatorics;2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3