On Abel’s Problem and Gauss Congruences

Author:

Delaygue É1,Rivoal T2

Affiliation:

1. Institut Camille Jordan , Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

2. Institut Fourier , CNRS et Université Grenoble Alpes, CS 40700, 38058 Grenoble Cedex 9, France

Abstract

Abstract A classical problem due to Abel is to determine if a differential equation $y^{\prime}=\eta y$ admits a non-trivial solution $y$ algebraic over $\mathbb C(x)$ when $\eta $ is a given algebraic function over $\mathbb C(x)$. Risch designed an algorithm that, given $\eta $, determines whether there exists an algebraic solution or not. In this paper, we adopt a different point of view when $\eta $ admits a Puiseux expansion with rational coefficients at some point in $\mathbb C\cup \{\infty \}$, which can be assumed to be 0 without loss of generality. We prove the following arithmetic characterization: there exists a non-trivial algebraic solution of $y^{\prime}=\eta y$ if and only if the coefficients of the Puiseux expansion of $x\eta (x)$ at $0$ satisfy Gauss congruences for almost all prime numbers. We then apply our criterion to hypergeometric series: we completely determine the equations $y^{\prime}=\eta y$ with an algebraic solution when $x\eta (x)$ is an algebraic hypergeometric series with rational parameters, and this enables us to prove a prediction Golyshev made using the theory of motives. We also present two other applications, namely to diagonals of rational fractions and to directed two-dimensional walks.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference32 articles.

1. G-Functions and geometry;André,1989

2. On second order linear differential equations with algebraic solutions;Baldassarri;Am. J. Math.,1979

3. Basic analytic combinatorics of directed lattice paths;Banderier;Theor. Comput. Sci.,2002

4. Some congruences for the Apéry numbers;Beukers;J. Number Theory,1985

5. Monodromy for the hypergeometric function $_n$F$_n-1$;Beukers;Invent. Math.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3