Dilations of q-Commuting Unitaries

Author:

Gerhold Malte12,Moshe Shalit Orr2

Affiliation:

1. Institut für Mathematik und Informatik, Universität Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germany

2. Faculty of Mathematics, Technion - Israel Institute of Technology, Haifa 3200003, Germany

Abstract

Abstract Let $q = e^{i \theta } \in \mathbb{T}$ (where $\theta \in \mathbb{R}$), and let $u,v$ be $q$-commuting unitaries, that is, $u$ and $v$ are unitaries such that $vu = quv$. In this paper, we find the optimal constant $c = c_{\theta }$ such that $u,v$ can be dilated to a pair of operators $c U, c V$, where $U$ and $V$ are commuting unitaries. We show that $$\begin{equation*} c_{\theta} = \frac{4}{\|u_{\theta}+u_{\theta}^*+v_{\theta}+v_{\theta}^*\|}, \end{equation*}$$where $u_{\theta }, v_{\theta }$ are the universal $q$-commuting pair of unitaries, and we give numerical estimates for the above quantity. In the course of our proof, we also consider dilating $q$-commuting unitaries to scalar multiples of $q^{\prime}$-commuting unitaries. The techniques that we develop allow us to give new and simple “dilation theoretic” proofs of well-known results regarding the continuity of the field of rotations algebras. In particular, for the so-called “almost Mathieu operator” $h_{\theta } = u_{\theta }+u_{\theta }^*+v_{\theta }+v_{\theta }^*$, we recover the fact that the norm $\|h_{\theta }\|$ is a Lipschitz continuous function of $\theta $, as well as the result that the spectrum $\sigma (h_{\theta })$ is a $\frac{1}{2}$-Hölder continuous function in $\theta $ with respect to the Hausdorff metric. In fact, we obtain this Hölder continuity of the spectrum for every self-adjoint *-polynomial $p(u_{\theta },v_{\theta })$, which in turn endows the rotation algebras with the natural structure of a continuous field of C*-algebras.

Funder

DFG

ISF

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3