Trace Densities and Algebraic Index Theorems for Sheaves of Formal Cherednik Algebras

Author:

Vitanov Alexander1

Affiliation:

1. Department of Mathematics, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA

Abstract

Abstract We show how a novel construction of the sheaf of Cherednik algebras $\mathscr {H}_{1, c, X, G}$ on a quotient orbifold $Y:=X/G$ in author’s prior work leads to results for $\mathscr {H}_{1, c, X, G}$, which until recently were viewed as intractable. First, for every orbit type stratum in $X$, we define a trace density map for the Hochschild chain complex of $\mathscr {H}_{1, c, X, G}$, which generalizes the standard Engeli–Felder’s trace density construction for the sheaf of differential operators $\mathscr {D}_X$. Second, by means of the newly obtained trace density maps, we prove an isomorphism in the derived category of complexes of $\mathbb {C}_{Y}\llbracket \hbar \rrbracket $-modules, which computes the hypercohomology of the Hochschild chain complex of the sheaf of formal Cherednik algebras $\mathscr {H}_{1, \hbar , X, G}$. We show that this hypercohomology is isomorphic to the Chen–Ruan cohomology of the orbifold $Y$ with values in the ring of formal power series $\mathbb {C}\llbracket \hbar \rrbracket $. We infer that the Hochschild chain complex of the sheaf of skew group algebras $\mathscr {H}_{1, 0, X, G}$ has a well-defined Euler characteristic that is equal to the orbifold Euler characteristic of $Y$. Finally, we prove an algebraic index theorem.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference34 articles.

1. Homologie des invariants d’une algèbre de Weyl sous l’action d’un groupe fini;Alev;J. Algebra,2000

2. Universal algebraic structures on polyvector fields;Alm,2014

3. Affinity of Cherednik algebras on projective space;Bellamy;Algebra Number Theory,2014

4. Morita equivalence of Cherednik algebras;Berest;J. Reine Angew. Math.,2004

5. Fedosov quantization in algebraic context;Bezrukavnikov;Mosc. Math. J.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3