Affiliation:
1. Mathematics Department, UC Irvine , Rowland Hall, Irvine, CA 92697, USA
Abstract
Abstract
We consider negative moments of quadratic Dirichlet $L$–functions over function fields. Summing over monic square-free polynomials of degree $2g+1$ in $\mathbb{F}_{q}[x]$, we obtain an asymptotic formula for the $k^{\textrm{th}}$ shifted negative moment of $L(1/2+\beta ,\chi _{D})$, in certain ranges of $\beta $ (e.g., when roughly $\beta \gg \log g/g $ and $k<1$). We also obtain non-trivial upper bounds for the $k^{\textrm{th}}$ shifted negative moment when $\log (1/\beta ) \ll \log g$. Previously, almost sharp upper bounds were obtained in [ 3] in the range $\beta \gg g^{-\frac{1}{2k}+\epsilon }$.
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Negative moments of the Riemann zeta-function;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-06