Nilpotent Groups and Bi-Lipschitz Embeddings Into L1

Author:

Eriksson-Bique Sylvester1,Gartland Chris2,Le Donne Enrico34,Naples Lisa5,Nicolussi Golo Sebastiano4

Affiliation:

1. Research Unit of Mathematical Sciences , P.O.Box 8000, FI-90014 Oulu, Finland

2. Texas A&M University , College Station, TX 77843, USA

3. University of Fribourg , Chemin du Musée 23, 1700 Fribourg, Switzerland

4. Department of Mathematics and Statistics, University of Jyväskylä , P.O. Box (MaD), FI-40014, Finland

5. Macalester College, 1600 Grand Avenue , Saint Paul, MN 55105

Abstract

Abstract We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an $L^1$ space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into $L^1$ is abelian. Our proof follows the work of Cheeger and Kleiner, by considering the pull-back distance of a Lipschitz map into $L^1$ and representing it using a cut measure. We show that such cut measures, and the induced distances, can be blown up and the blown-up cut measure is supported on “generic” tangents of the original sets. By repeating such a blow-up procedure, one obtains a cut measure supported on half-spaces. This differentiation result then is used to prove that bi-Lipschitz embeddings can not exist in the non-abelian settings.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference41 articles.

1. Volume 181 of Cambridge Stud. Adv. Math;Agrachev,2020

2. Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces;Ambrosio;Adv. Math.,2001

3. Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane;Ambrosio;J. Geom. Anal.,2009

4. Approximate Nearest Neighbor Search in High Dimensions;Andoni;Proceedings of the International Congress of Mathematicians,2018

5. On the bi-Lipschitz geometry of lamplighter graphs;Baudier;Discrete Comput. Geom.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3