Semiclassical Resonance Asymptotics for Systems With Degenerate Crossings of Classical Trajectories

Author:

Assal Marouane1,Fujiie Setsuro2,Higuchi Kenta3

Affiliation:

1. Departamento de Matemática y Ciencia de la Computación , Universidad de Santiago de Chile, Las Sophoras 173, Santiago, Chile

2. Department of Mathematical Sciences , Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, 525-8577, Japan

3. Graduate School of Science and Engineering , Ehime University, Bunkyocho 3, Matsuyama, Ehime, 790-8577, Japan

Abstract

Abstract This paper is concerned with the asymptotics of resonances in the semiclassical limit $h\to 0^{+}$ for two-by-two matrix Schrödinger operators in one dimension. We study the case where the two underlying classical Hamiltonian trajectories cross tangentially in the phase space. In the setting that one of the classical trajectories is a simple closed curve whereas the other one is non-trapping, we show that the imaginary part of the resonances is of order $h^{(m_{0}+3)/(m_{0}+1)}$, where $m_{0}$ is the maximal contact order of the crossings. This principal order comes from the subprincipal term of the transfer matrix at crossing points, which describes the propagation of microlocal solutions from one trajectory to the other. In addition, we compute explicitly the leading coefficient of the resonance widths.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference23 articles.

1. Molecular predissociation resonances below an energy level crossing;Ashida;Asymptot. Anal.,2018

2. Eigenvalue splitting of polynomial order for a system of Schrödinger operators with energy-level crossing;Assal;Comm. Math. Phys.,2021

3. Asymptotique des largeurs de résonances pour un modèle d’effet tunnel microlocal;Baklouti;Ann. Inst. Henri Poincaré Phys. Théor.,1998

4. The level crossing problem in semi-classical analysis. II. The Hermitian case;Colin de Verdière;Univ. Grenoble Ann.Inst. Fourier. Univ. Grenoble I,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3