Covering by Planks and Avoiding Zeros of Polynomials

Author:

Glazyrin Alexey1,Karasev Roman2,Polyanskii Alexandr3

Affiliation:

1. School of Mathematical and Statistical Sciences , The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

2. Institute for Information Transmission Problems RAS , Bolshoy Karetny per. 19, Moscow, Russia 127994

3. Moscow Institute of Physics and Technology , Institutskiy per. 9, Dolgoprudny, Russia 141700

Abstract

Abstract We note that the recent polynomial proofs of the spherical and complex plank covering problems by Zhao and Ortega-Moreno give some general information on zeros of real and complex polynomials restricted to the unit sphere. As a corollary of these results, we establish several generalizations of the celebrated Bang plank covering theorem. We prove a tight polynomial analog of the Bang theorem for the Euclidean ball and an even stronger polynomial version for the complex projective space. Specifically, for the ball, we show that for every real nonzero $d$-variate polynomial $P$ of degree $n$, there exists a point in the unit $d$-dimensional ball at distance at least $1/n$ from the zero set of the polynomial $P$. Using the polynomial approach, we also prove the strengthening of the Fejes Tóth zone conjecture on covering a sphere by spherical segments, closed parts of the sphere between two parallel hyperplanes. In particular, we show that the sum of angular widths of spherical segments covering the whole sphere is at least $\pi $.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference11 articles.

1. The complex plank problem;Ball;Bull. Lond. Math. Soc.,2001

2. A solution of the ‘plank problem’;Bang;Proc. Amer. Math. Soc.,1951

3. Tarski’s plank problem revisited;Bezdek;Bolyai Soc. Math. Stud.,2013

4. A circle covering theorem;Goodman;Amer. Math. Monthly,1945

5. Proof of László Fejes Tóth’s zone conjecture;Jiang;Geom. Funct. Anal.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extensions of polynomial plank covering theorems;Bulletin of the London Mathematical Society;2023-12-23

2. From the Separable Tammes Problem to Extremal Distributions of Great Circles in the Unit Sphere;Discrete & Computational Geometry;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3