Uniform Random Covering Problems

Author:

Koivusalo Henna1,Liao Lingmin2,Persson Tomas3

Affiliation:

1. School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK

2. Université Paris-Est Creteil, CNRS, LAMA, F-94010 Creteil, France, and Université Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée, France

3. Centre for Mathematical Sciences, Lund University, Box 118, 221 00 Lund, Sweden

Abstract

Abstract Motivated by the random covering problem and the study of Dirichlet uniform approximable numbers, we investigate the uniform random covering problem. Precisely, consider an i.i.d. sequence $\omega =(\omega _n)_{n\geq 1}$ uniformly distributed on the unit circle $\mathbb{T}$ and a sequence $(r_n)_{n\geq 1}$ of positive real numbers with limit $0$. We investigate the size of the random set $$\begin{align*} & {\operatorname{{{\mathcal{U}}}}} (\omega):=\{y\in \mathbb{T}: \ \forall N\gg 1, \ \exists n \leq N, \ \text{s.t.} \ | \omega_n -y | < r_N \}. \end{align*}$$Some sufficient conditions for ${\operatorname{{{\mathcal{U}}}}}(\omega )$ to be almost surely the whole space, of full Lebesgue measure, or countable, are given. In the case that ${\operatorname{{{\mathcal{U}}}}}(\omega )$ is a Lebesgue null measure set, we provide some estimations for the upper and lower bounds of Hausdorff dimension.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference17 articles.

1. Séries de Fourier aléatoirement bornées, continues, uniformément convergentes;Billard;Ann. Sci. Éc. Norm. Supér. (4),1965

2. A note on inhomogeneous diophantine approximation;Bugeaud;Glasgow Math. J.,2003

3. On covering a circle by randomly placed arcs;Dvoretzky;Proc. Natl. Acad. Sci. USA,1956

4. Some unsolved problems;Erd̋s;Publ. Math. Inst. Hung. Acad. Sci. Ser. A,1961

5. On the covering by small random intervals;Fan;Ann. Inst. Henri Poincaré Probab. Stat.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uniform approximation problems of expanding Markov maps;Ergodic Theory and Dynamical Systems;2023-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3