Real Orbits of Complex Spherical Homogeneous Spaces: the Split Case

Author:

Cupit-Foutou Stéphanie1,Timashev Dmitry A2

Affiliation:

1. Ruhr-Universität Bochum, Fakultät für Mathematik , D-44780 Bochum, Germany

2. Department of Higher Algebra, Faculty of Mechanics and Mathematics , Lomonosov Moscow State University, 119991 Moscow, Russia

Abstract

Abstract We introduce some reflection operators on the set of real Borel orbits of the real locus $X({\mathbb {R}})$ of any spherical complex variety $X$ defined over ${\mathbb {R}}$ and homogeneous under a split connected reductive group $G$ defined also over ${\mathbb {R}}$. We thus investigate the existence problem for an action of the Weyl group of $G$ on the set of real Borel orbits of $X({\mathbb {R}})$. In particular, we determine the varieties $X$ for which the above-mentioned reflection operators define an action of the very little Weyl group of $X$ on the set of open real Borel orbits of $X({\mathbb {R}})$. This enables us to give a parametrization of the $G({\mathbb {R}})$-orbits for such $X({\mathbb {R}})$ in terms of the orbits of this new action.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference15 articles.

1. On the canonical real structure on wonderful varieties;Akhiezer;J. Reine Angew. Math.,2014

2. The spherical systems of the wonderful reductive subgroups;Bravi;J. Lie Theory,2015

3. On orbit closures of spherical subgroups in flag varieties;Brion;Comment. Math. Helv.,2001

4. Espaces homogènes sphériques;Brion;Invent. Math.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3