Deformations of Hypersurfaces with Nonconstant Alexander Polynomial

Author:

Kloosterman Remke1

Affiliation:

1. Dipartimento di Matematica , Tullio Levi-Civita, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy

Abstract

Abstract Let $X \subset \mathbf {P}^n$ be an irreducible hypersurface of degree $d\geq 3$ with only isolated semi-weighted homogeneous singularities, such that $\exp (\frac {2\pi i}{k})$ is a zero of its Alexander polynomial. Then we show that the equianalytic deformation space of $X$ is not $T$-smooth except for a finite list of triples $(n,d,k)$. This result captures the very classical examples by B. Segre of families of degree $6m$ plane curves with $6m^2$, $7m^2$, $8m^2$, and $9m^2$ cusps, where $m\geq 3$. Moreover, we argue that many of the hypersurfaces with nontrivial Alexander polynomial are limits of constructions of hypersurfaces with not $T$-smooth deformation spaces. In many instances, this description can be used to find candidates for Alexander-equivalent Zariski pairs.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference15 articles.

1. Mordell–Weil groups of elliptic threefolds and the Alexander module of plane curves;Cogolludo-Agustín;J. Reine Angew. Math.,2014

2. Filtrations de Hodge et par l’ordre du pôle pour les hypersurfaces singulières;Deligne;Ann. Sci. Éc. Norm. Supér. (4),1990

3. Betti numbers of hypersurfaces and defects of linear systems;Dimca;Duke Math. J.,1990

4. On the Milnor fibrations of weighted homogeneous polynomials;Dimca;Compos. Math.,1990

5. Singularities and Topology of Hypersurfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3