Monotonicity of the p-Green Functions

Author:

Chan Pak-Yeung1,Chu Jianchun2,Lee Man-Chun3,Tsang Tin-Yau4

Affiliation:

1. Department of Mathematics, University of California , San Diego, La Jolla, CA 92093, USA

2. School of Mathematical Sciences, Peking University , Yiheyuan Road 5, Beijing 100871, People’s Republic of China

3. Department of Mathematics, The Chinese University of Hong Kong , Shatin, N.T., Hong Kong

4. Department of Mathematics, University of California , Irvine, CA 92697, USA

Abstract

Abstract On a complete $p$-nonparabolic $3$-dimensional manifold with non-negative scalar curvature and vanishing second homology, we establish a sharp monotonicity formula for the proper $p$-Green function along its level sets for $1<p<3$. This can be viewed as a generalization of the recent result by Munteanu-Wang [ 43] in the case of $p=2$. No smoothness assumption is made on the $p$-Green function when $1<p\leq 2$. Several rigidity results are also proven.

Publisher

Oxford University Press (OUP)

Reference52 articles.

1. Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature;Agostiniani;Invent. Math.,2020

2. Minkowski Inequalities via Nonlinear Potential Theory;Agostiniani;Arch Rational Mech Anal,2022

3. “Riemannian Penrose inequality via nonlinear potential theory;Agostiniani

4. On the geometry of the level sets of bounded static potentials;Agostiniani;Commun. Math. Phys.,2017

5. Monotonicity formulas in potential theory;Agostiniani;Calc. Var. Partial Differential Equations 59,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3