Integral Representation and Supports of Functionals on Lipschitz Spaces

Author:

Aliaga Ramón J1,Pernecká Eva2

Affiliation:

1. Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain

2. Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 160 00, Prague 6, Czech Republic

Abstract

Abstract We analyze the relationship between Borel measures and continuous linear functionals on the space $\textrm{Lip}_0(M)$ of Lipschitz functions on a complete metric space $M$. In particular, we describe continuous functionals arising from measures and vice versa. In the case of weak$^\ast $ continuous functionals, that is, members of the Lipschitz-free space $\mathcal{F}(M)$, measures on $M$ are considered. For the general case, we show that the appropriate setting is rather the uniform (or Samuel) compactification of $M$ and that it is consistent with the treatment of $\mathcal{F}(M)$. This setting also allows us to give a definition of support for all elements of $\textrm{Lip}_0(M)^\ast $ with similar properties to those in $\mathcal{F}(M)$, and we show that it coincides with the support of the representing measure when such a measure exists. We deduce that the members of $\textrm{Lip}_0(M)^\ast $ that can be expressed as the difference of two positive functionals admit a Jordan-like decomposition into a positive and a negative part.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convex integrals of molecules in Lipschitz-free spaces;Journal of Functional Analysis;2024-10

2. Signatures, Lipschitz-Free Spaces, and Paths of Persistence Diagrams;SIAM Journal on Applied Algebra and Geometry;2023-12-14

3. Injectivity of Lipschitz Operators;Bulletin of the Malaysian Mathematical Sciences Society;2023-01-30

4. L-Orthogonal Elements and L-Orthogonal Sequences;International Mathematics Research Notices;2022-05-09

5. Extreme Points in Lipschitz-Free Spaces over Compact Metric Spaces;Mediterranean Journal of Mathematics;2022-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3