New Combinatorial Identity for the Set of Partitions and Limit Theorems in Finite Free Probability Theory

Author:

Arizmendi Octavio1,Fujie Katsunori2,Ueda Yuki3

Affiliation:

1. Centro de Investigación en Matemáticas , Guanajuato, Gto. 36000 , Mexico

2. Department of Mathematics , Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 , Japan

3. Department of Mathematics , Hokkaido University of Education. Hokumon-cho 9, Asahikawa, Hokkaido, 070-8621 , Japan

Abstract

Abstract We provide a refined combinatorial identity for the set of partitions of $\{1,\dots , n\}$, which plays an important role in investigating several limit theorems related to finite free convolutions. Firstly, we present the finite free analogue of Sakuma and Yoshida’s limit theorem. That is, we provide the limit of $\{D_{1/m}((p_{d}^{\boxtimes _{d}m})^{\boxplus _{d}m})\}_{m\in{\mathbb{N}}}$ as $m\rightarrow \infty $ in two cases: (i) $m/d\rightarrow t$ for some $t>0$ or (ii) $m/d\rightarrow 0$. The second application presents a central limit theorem for finite free multiplicative convolution. We establish a connection between this theorem and the multiplicative free semicircular distributions through combinatorial identities. Our last result gives alternative proofs for Kabluchko’s limit theorems concerning the unitary Hermite and the Laguerre polynomials.

Funder

JSPS Open Partnership Joint Research Projects

Japan Society for the Promotion of Science

Hokkaido University Ambitious Doctoral Fellowship

CONACYT

Publisher

Oxford University Press (OUP)

Reference29 articles.

1. Finite free cumulants: multiplicative convolutions, genus expansion and infinitesimal distributions;Arizmendi,2018

2. Cumulants for finite free convolution;Arizmendi;J. Combin. Theory Ser. A,2018

3. Products of free random variables and $k$-divisible non-crossing partitions;Arizmendi;Electron. Comm. Probab.,2012

4. Lévy-Hincin type theorems for multiplicative and additive free convolution;Bercovici;Pacific J. Math.,1992

5. Free convolution of measures with unbounded support;Bercovici;Indiana Univ. Math. J.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3