Non-Gaussian Waves in Šeba’s Billiard

Author:

Kurlberg Pär1,Ueberschär Henrik2

Affiliation:

1. Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

2. Institut de Mathématiques de Jussieu, Campus Pierre et Marie Curie, Sorbonne Université, 4 place Jussieu, 75005 Paris, France

Abstract

Abstract The Šeba billiard, a rectangular torus with a point scatterer, is a popular model to study the transition between integrability and chaos in quantum systems. Whereas such billiards are classically essentially integrable, they may display features such as quantum ergodicity [11], which are usually associated with quantum systems whose classical dynamics is chaotic. Šeba proposed that the eigenfunctions of toral point scatterers should also satisfy Berry’s random wave conjecture, which implies that the value distribution of the eigenfunctions ought to be Gaussian. However, Keating, Marklof, and Winn formulated a conjecture that suggested that Šeba billiards with irrational aspect ratio violate the random wave conjecture, and we show that this is indeed the case. More precisely, for tori having diophantine aspect ratio, we construct a subsequence of the set of new eigenfunctions having even/even symmetry, of essentially full density, and show that its 4th moment is not consistent with a Gaussian value distribution. In fact, given any set $\Lambda $ interlacing with the set of unperturbed eigenvalues, we show non-Gaussian value distribution of the Green’s functions $G_{\lambda }$, for $\lambda $ in an essentially full density subsequence of $\Lambda $.

Funder

Swedish Research Council

French National Research Agency ANR

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference18 articles.

1. Intensity moments of semiclassical wavefunctions;Berry;Physica,1983

2. Star graphs and Seba billiards;Berkolaiko;J. Phys. A,2001

3. Value distribution of the eigenfunctions and spectral determinants of quantum star graphs;Keating;Comm. Math. Phys.,2003

4. Models of intermediate spectral statistics;Bogomolny;Phys. Rev. E (3),1999

5. Singular statistics;Bogomolny;Phys. Rev. E (3),2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3