The Threshold for Stacked Triangulations

Author:

Lubetzky Eyal1,Peled Yuval2

Affiliation:

1. Courant Institute , New York University, 251 Mercer Street, New York, NY 10012, USA

2. Einstein Institute of Mathematics , Hebrew University, Jerusalem 91904, Israel

Abstract

Abstract A stacked triangulation of a $d$-simplex $\mathbf {o}=\{1,\ldots ,d+1\}$ ($d\geq 2$) is a triangulation obtained by repeatedly subdividing a $d$-simplex into $d+1$ new ones via a new vertex (the case $d=2$ is known as an Appolonian network). We study the occurrence of such a triangulation in the Linial–Meshulam model, that is, for which $p$ does the random simplicial complex $Y\sim {\mathcal {Y}}_d(n,p)$ contain the faces of a stacked triangulation of the $d$-simplex $\mathbf {o}$, with its internal vertices labeled in $[n]$. In the language of bootstrap percolation in hypergraphs, it pertains to the threshold for $K_{d+2}^{d+1}$, the $(d+1)$-uniform clique on $d+2$ vertices. Our main result identifies this threshold for every $d\geq 2$, showing it is asymptotically $(\alpha _d n)^{-1/d}$, where $\alpha _d$ is the growth rate of the Fuss–Catalan numbers of order $d$. The proof hinges on a second moment argument in the supercritical regime and on Kalai’s algebraic shifting in the subcritical regime.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3