Affiliation:
1. Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
Abstract
Abstract
Let $\Omega \subset {\mathbb{R}}^d $, $d \geq 2$, be a bounded convex domain and $f\colon \Omega \to{\mathbb{R}}$ be a non-negative subharmonic function. In this paper, we prove the inequality $$\begin{equation*} \frac{1}{|\Omega|}\int_{\Omega} f(x)\, \textrm{d}x \leq \frac{d}{|\partial\Omega|}\int_{\partial\Omega} f(x)\, \textrm{d}\sigma(x)\,. \end{equation*}$$Equivalently, the result can be stated as a bound for the gradient of the Saint Venant torsion function. Specifically, if $\Omega \subset{\mathbb{R}}^d$ is a bounded convex domain and $u$ is the solution of $-\Delta u =1$ with homogeneous Dirichlet boundary conditions, then $$\begin{equation*} \|\nabla u\|_{L^\infty(\Omega)} < d\frac{|\Omega|}{|\partial\Omega|}\,. \end{equation*}$$Moreover, both inequalities are sharp in the sense that if the constant $d$ is replaced by something smaller there exist convex domains for which the inequalities fail. This improves upon the recent result that the optimal constant is bounded from above by $d^{3/2}$ due to Beck et al. [2].
Publisher
Oxford University Press (OUP)
Reference20 articles.
1. Isoperimetric-type bounds for solutions of the heat equation;Bañuelos;Indiana Univ. Math. J.,1997
2. Improved bounds for Hermite–Hadamard inequalities in higher dimensions;Beck;J. Geom. Anal.
3. A Hadamard–Jensen inequality and an application to the elastic torsion problem;Dragomir;Appl. Anal.,2000
4. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann;Hadamard;J. Math. Pures Appl.,1893
5. Sur une formule relative a la theorie des fonctions d’une variable;Hermite;Amer. J. Math.,1883/84
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献