A Sharp Multidimensional Hermite–Hadamard Inequality

Author:

Larson Simon1

Affiliation:

1. Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA

Abstract

Abstract Let $\Omega \subset {\mathbb{R}}^d $, $d \geq 2$, be a bounded convex domain and $f\colon \Omega \to{\mathbb{R}}$ be a non-negative subharmonic function. In this paper, we prove the inequality $$\begin{equation*} \frac{1}{|\Omega|}\int_{\Omega} f(x)\, \textrm{d}x \leq \frac{d}{|\partial\Omega|}\int_{\partial\Omega} f(x)\, \textrm{d}\sigma(x)\,. \end{equation*}$$Equivalently, the result can be stated as a bound for the gradient of the Saint Venant torsion function. Specifically, if $\Omega \subset{\mathbb{R}}^d$ is a bounded convex domain and $u$ is the solution of $-\Delta u =1$ with homogeneous Dirichlet boundary conditions, then $$\begin{equation*} \|\nabla u\|_{L^\infty(\Omega)} < d\frac{|\Omega|}{|\partial\Omega|}\,. \end{equation*}$$Moreover, both inequalities are sharp in the sense that if the constant $d$ is replaced by something smaller there exist convex domains for which the inequalities fail. This improves upon the recent result that the optimal constant is bounded from above by $d^{3/2}$ due to Beck et al. [2].

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference20 articles.

1. Isoperimetric-type bounds for solutions of the heat equation;Bañuelos;Indiana Univ. Math. J.,1997

2. Improved bounds for Hermite–Hadamard inequalities in higher dimensions;Beck;J. Geom. Anal.

3. A Hadamard–Jensen inequality and an application to the elastic torsion problem;Dragomir;Appl. Anal.,2000

4. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann;Hadamard;J. Math. Pures Appl.,1893

5. Sur une formule relative a la theorie des fonctions d’une variable;Hermite;Amer. J. Math.,1883/84

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3